
7

SPE solution for fast
communication with 10BASET1L,
42 Byte in 50 µs in Ring Topology

Dr. Hartmut Schorrig
www.vishia.org

2023-09-05

page 2 SPE as standard connection in electrical plants

Table of Contents

1 SPE as standard connection in electrical plants..2

2 Solution: Ring communication with up to 40 data Byte per telegram...3

3 Currently implementation using a FPGA and hard wired driver...4

4 Capability of frame and clock synchronization...5

5 Data exchange just in time..5

6 Using inside a standard Ethernet ring..6

7 Application of this kind of SPE communication..6

8 Links..7

1 SPE as standard connection in electrical plants

The Single Pair Ethernet technology seems to become a proven concept for communication wiring
in plants.

For electrical signal transmission, often a cycle of 50 µs are proper. This is fast enough for proper
control of electrical grids, and also possible for familiar power switches (IGBT) and for cycle times
of controllers. With a longer step time, such as 1 ms, the “fault ride through” approach is not
possible. On faults, the current and voltage control should be faster than the normal smoothing
times of electrical elements (usual inductance).

The traditional approach is either using conventional analog lines, or specific solutions often with
fiber optic cable. Using the Single Pair Ethernet offers a common proper way for communication.

The length of lines in an electrical plant are often greater than 100 m, and the immunity to electrical
interference must be high. For that reason, using Ethernet, a baud rate of 10 MBit/s combined with
the noise resistant Manchester Coding of the signals may be proper. This seems to be contrary to
the necessary cycle time of 50 µs. But the question is: how many data should be transmitted in one
cycle.

Solution: Ring communication with up to 40 data Byte per telegram page 3

2 Solution: Ring communication with up to 40 data Byte per telegram

From the Standards of Ethernet Communication due to the known OSI-7-Level model, only the first
level, the physic, is used. The other levels are changed.

Base on the physical level, all elements can be used due its standards: Cable, plugs, and also the
PHY chips.

Figure 1: TelgTopology/SpeRring50usOsi.png

The image above shows the data content due to OSI level two. Because of the ring topology, not
using a router, all addressing bytes are not necessary. The addressing of stations is determined by
the hardware connection, there is no routing. Only one data word, two bytes are used for an
sender identification to check the connection and help detect faulty connections.

Also the gap is reduced to a very small gap. The gap is necessary for standard ethernet
communication with bus topology to detect a free line, unnecessary for ring communicaiton. But a
small gap (~ 1 µs) remains. But the synchronizing bits remains. They are necessary for clock
synchronization. And the CRC remains. Does the shortened gap violate the physical standard of
transmission. That should be anwered by the properties of the given PHY chips. If they support a
shorter gap, it is proper. Influences to signal qualities are not expected.

With that decision 40 byte can be transmitted as the payload for the telegram. This needs 32 µs,
with the sender address bytes it is ~34 µs. CRC needs 3.2 µs, the gap 1 µs. Hence 12 µs remains
for the synchronization phase. This is enough to exchange the few values for current, voltage and
power for three phases, some state signals and also transmit actor signals for converter inputs.

With 40 byte for example 20 values á 16 bit are able to transmit. The ring topology allows
exchange bytes from one station to the next of the telegram.

page 4 Currently implementation using a FPGA and hard wired driver

3 Currently implementation using a FPGA and hard wired driver

The solution used and tested now was developed from 2021. In this time a specific PHY chip for
the communication with the given requirements for the prototype tests was not found. Hence, the
decision was, implementing the necessary logic for communication transfer and also for the driver
in an FPGA (Lattice XO-4000). The signal driver itself are implementing using standard magnetics
components (ferrite) for signal potential separation and noise suppression, but using conventional
driver for the current to the line of 20 mA (level 1 V, resistance 2 * 100 Ohm). The signal input was
proper supported by the FPGA itself with its differential input capability.

Figure 2: Board/boardAsch_CurrSrc.png

The image above shows the hardware for signal driving. It consists of switched current sources
and open-drain switches, which forces + or – 20 mA in the line. The inputs of the open drain driver
circuits are connected to FPGA outputs. The RXD1H and ~L are immediately a FPGA difference
input. Right side you see also a solution for “Power over Dataline”. This solution works, tested with
a 100 m cable without problems, and tested also with a PC connection with the standard ethernet
protocol, see chapter Using inside a standard Ethernet ring

Now, doing in the future, it is necessary to check whether the given driver can be replaced by the
outputs of a physical chip, whereby the ADIN1100 from Analog Devices will be preferred.

Figure 3: SpeA-board-overview.png

Capability of frame and clock synchronization page 5

4 Capability of frame and clock synchronization

The clock synchronization is an important capability: The stations connected via SPE should have
a synchronous clock for building Pulse Width Modulation (PWM) signals and average filters for
connected A/D converter synchronous to the controlling cycle. This means a clock which is
provided from the FPGA should be synchronous with a less jitter of 30..300 ns (30 ns between
immediately neighboring two stations). This clock synchronization is done by the FPGA solution. It
is to check whether a used PHY chip can support it also.

The image right shows the received Start Frame
Delimiter (SFD) in blue and the transmitted SFD in the
red track on the cursor positions. Both have a jitter
from max 30 ns. The scope is synchronized with a
frame signal from the master coming from the
controller, which determines the 50 µs cycle. The
internal clock of the FPGA of 100 MHz is not
controlled, it is free running. But the Clock Enable
signal (CE) which controls the FlipFlop switching is
synchronized, using typical 10 clock edges for pre
dividing, but sometimes 9 or 11 clock edges controlled
by a state machine. This logic evaluates the rising
edges of all synchronization bits till just the SFD. This
pre divided controlled CE signal of ~ 10 MHz is offered
also to the controller for PWM signal building. It is
synchronized over all stations in the SPE ring. In this manner all stations works with the same 50
µs frame with a 10 MHz clock. This also offers a time synchronization. You can view a living gif
image on [1] or open the image immediately with [2].

5 Data exchange just in time

Normally an Ethernet telegram is received as a whole, the CRC check is done, then the data can
be used. This offers checked and consistent data. But it means also, that additonal one cycle (50
µs) dead time occurs between transmitting and receiving, additionally to the given dead times for
data averaging and calculation. It means at least 150 µs dead time is given in the controlling cycle.

If the fine timing is known where data are processed to transmit, and where data can be taken from
the received telegram to process it, the one cycle dead time can be ommitted. The reaction of the
system in the loop is faster. For that a “data just in time” or “data on the fly” approach is
implemented:

The data to transmit via SPE are taken from the RAM of the controller immediately before they are
transmitted. This is done via DMA (Direct Memory Access) forced by the FPGA via SPI interface
(Serial Peripheral Interface to the controller). The FPGA is the Master of this SPI communication. It
determines the timing of access. The SPI communication should be prepared before by the
controller software.

It means a value used for SPE should be written to the RAM by the controller software a small time
before. A Jitter in software should be regarded, approximately ~ 5 µs should be possible. This new
calculated data are immediately (5..1 µs later) transmitted, needs ~ 4 µs for bit shifting and
transmission itself, and are written after ~9..5 µs in the RAM of the receiving controller. This is not
only for the next neighbour station, it is also for more far stations, because the receiving signal is
transmitted immediately forward in the ring topology as seen in Figure 4: SFDdelayJitter.gif with a
delay of ~ 0.3 µs per station and a delay of 0.5 µs for a 100 m cable. Because of also regarding a

Figure 4: SFDdelayJitter.gif

https://vishia.org/spe/videos/SFDdelayJitter.gif
https://vishia.org/spe/index.html

page 6 Data exchange just in time

jitter in software of ~ 5 µs (or a little bit more), the signal is available just in time after 14… µs in the
other station and can be used. Of course this is only possible if the software execution is fine tuned
to this timing. The position of the data should be adjusted to the software execution. But now the
dead time of a controller cycle is meaningful reduced.

The image right shows a
snapshot of this communi-
cation. The Ring-Master left
writes just data in the 11.
data word. The transmission
processes just the 8th data
word, the 11th. one comes in
4.8 µs later. The 7th data
word is written just now in
the RAM of the next station.
The newly written 11th word
will come 6.4 µs later and
can be processed after a proper waiting time because jitter, or it can be checked by polling also till
it was written. In the right box for Slave 2 you see not forwarding the received data bytes (as in
Slave 1) but just reading data bytes from the RAM of this controller, which is forwarded replacing
the original received data word. In the same kind the orange and red words in Slave 2 and also
back to the Ring-Master comes from the Slave 1. The replacing of data words in the ring topology
telegrams is similar as also known in the EtherCAT communication, see [3].

You can visit a living image and also more explanation in [4].

6 Using inside a standard Ethernet ring

A test application was built using a PC in the ring with a standard Ethernet plug. The
communication parameter are set under Windows to 10 Mbit/s. From the 4 twisted wires two ones
are used, one for transmit, one for receive, immediately connected (without any switch) to the SPE
plugs. This works because the signal level is compatible. The main goal for this test was the
compatibility test of the data protocol. The negotiation signals for connection (NLP pulses, [5]) are
also supported by the transmission station. Of course this does not work with the reduced telegram
for the 50 µs cycle. It needs the OSI-7-level full compatibility. But this is supported by the specific
software of the controller, writing correct information to the data positions. The cycle for this test
was 1 ms with 1000 Data bytes in the telegram. The standard gap was used.

You can see some details in [6] in the chapter 3. Usage with standard communication PC in ring /
as receiver.

7 Application of this kind of SPE communication

Till now this approach is only used in students work on the TU Ilmenau in Germany, by the master
thesis of Paulami Das [7].

The usage of the PHY chip preferred the AD1100 should be tested in the future.

For more application ideas you can write immediately to the developer and author of this article:
hartmut.schorrig@vishia.de (Freelancer, Germany).

mailto:hartmut.schorrig@vishia.de
https://vishia.org/spe/html/SpeA-Manual/SpeA-Videos.html
https://en.wikipedia.org/wiki/Autonegotiation
https://vishia.org/spe/html/SpeA-Manual/SpeA-telgRingCommJustintime.html
https://en.wikipedia.org/wiki/EtherCAT

Links page 7

8 Links

[1] https://vishia.org/spe/index.html Web page by the author given a overview over this SPE topic.

[2] https://vishia.org/spe/videos/SFDdelayJitter.gif Gif shows the jitter from receiving and forward
transmitting signals in the ring

[3] https://en.wikipedia.org/wiki/EtherCAT.

[4] https://vishia.org/spe/html/SpeA-Manual/SpeA-telgRingCommJustintime.html .Explanation and
demonstration of the data just in time concept from the author.

[5] https://en.wikipedia.org/wiki/Autonegotiation Explanation of NLP and FLP for standard Ethernet
communication for auto negotiation and living signals.

[6] https://vishia.org/spe/html/SpeA-Manual/SpeA-Videos.html Explanation to some videos for the
authors work. The videos are partially in German language.

[7] Das, Paulami: "Commissioning of an electric grid controller in Simulink in Embedded Control
programming in C++ along with distributed processing on several microcontrollers with Single
Pair Ethernet on FPGA" Master thesis (en) TU Ilmenau, EI, Elektrische Energie- und
Steuerungstechnik, December 2021

https://vishia.org/spe/html/SpeA-Manual/SpeA-Videos.html
https://en.wikipedia.org/wiki/Autonegotiation
https://vishia.org/spe/html/SpeA-Manual/SpeA-telgRingCommJustintime.html.Explanation
https://vishia.org/spe/html/SpeA-Manual/SpeA-telgRingCommJustintime.html.Explanation
https://en.wikipedia.org/wiki/EtherCAT
https://vishia.org/spe/videos/SFDdelayJitter.gif
https://vishia.org/spe/index.html

	1 SPE as standard connection in electrical plants
	2 Solution: Ring communication with up to 40 data Byte per telegram
	3 Currently implementation using a FPGA and hard wired driver
	4 Capability of frame and clock synchronization
	5 Data exchange just in time
	6 Using inside a standard Ethernet ring
	7 Application of this kind of SPE communication
	8 Links

